Nobel de Medicina a la investigación de células madre
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync

Nobel de Medicina a la investigación de células madre

El premio Nobel de Fisiología o Medicina fue otorgado conjuntamente al británico John Gurdon y el japonés Shinya Yamanaka por sus descubrimientos sobre la reprogramación de las células.
8 de octubre, 2012
Comparte

El premio Nobel de Fisiología o Medicina fue otorgado conjuntamente al británico John Gurdon y el japonés Shinya Yamanaka.

El premio Nobel de Fisiología o Medicina fue otorgado conjuntamente al británico John Gurdon y el japonés Shinya Yamanaka por sus descubrimientos sobre la reprogramación de las células.

Sus hallazgos, dijo el presidente del Comité Nobel, “han cambiado completamente nuestro entendimiento sobre el desarrollo y especialización de las células y organismos”.

Los estudios de los profesores Gurdon, de la Universidad de Cambridge, Inglaterra, y Yamanaka, de las universidades de Kioto, Japón, y California, en San Francisco, “han revolucionado la investigación sobre cómo las células maduras pueden reprogramarse para convertirse en células madre pluripotenciales, capaces de volverse cualquier tipo de tejido en el organismo”.

Hasta antes de estas investigaciones se pensaba que una vez creadas, las células se multiplicaban para convertirse en células especializadas y formar cualquier tejido en el organismo.

Y se pensaba que este proceso era irreversible: una vez que la célula se había especializado no se podía cambiar su estado.

John Gurdon descubrió en 1962 que la especialización de las células podría revertirse.

En experimentos con ranas reemplazó el núcleo de una célula inmadura de un óvulo con una célula intestinal madura y demostró que el óvulo modificado podía desarrollarse en un embrión normal.

El hallazgo mostró que el ADN de una célula madura podía mantener toda la información necesaria para convertirse en cualquier tipo de célula en el organismo.

Esta técnica eventualmente condujo a la creación de la oveja Dolly, el primer mamífero clonado.

El profesor Gurdon sentó las bases para que 40 años después, en 2006, Shinya Yamanaka descubriera cómo las células maduras en ratones podían reprogramarse para convertirse en células madre inmaduras.

Yamanaka encontró que al introducir sólo cuatro genes podía reprogramar las células maduras ya diferencias -utilizó células de la piel- y convertirlas en células pluripotenciales -similares a las células madre embrionarias- capaces de volverse cualquier tipo de tejido.

Células pluripotenciales

El hallazgo condujo al descubrimiento de las células madre pluripotenciales inducidas (IPSC), que ha sido calificado de un avance extraordinario en la investigación de células madre ya que permite a los científicos obtener células madre para usos terapéuticos sin necesidad de recurrir al controvertido uso de embriones.

Además, como las IPSC provienen de las propias células de un paciente, los tratamientos derivados con ellas pueden evitar cualquier rechazo del sistema inmune.

Tal como expresó el Comité Nobel, los descubrimientos de Gurdon y Yamanaka han acercado a la creación de tratamientos para enfermedades genéticas.

Al crear células IPSC de pacientes con trastornos genéticos los científicos han podido observar cuáles son los genes defectuosos y cómo y porqué ocurren estos defectos.

Esto ha permitido contar con modelos de enfermedades para estudiar los mecanismos células que conducen a ellas e incluso probar tratamientos potenciales.

Tal como declaró el Comité Nobel, “los descubrimientos de Gurdon y Yamanaka han demostrado que las células especializadas pueden bajo ciertas circunstancias echar marcha atrás en el reloj del desarrollo”.

“Estos hallazgos también han ofrecido nuevas herramientas para los científicos en todo el mundo y han conducido a un progreso extraordinario en muchas áreas de la medicina”.

John Gurdon, de 79 años, es actualmente profesor de biología celular en la Universidad de Cambridge y en el Instituto Gurdon en esa misma ciudad, que él fundó.

En una entrevista reciente, describió su investigación como “tratar de encontrar formas de obtener células embrionarias de las células de un adulto”.

“El objetivo eventual es ofrece un reemplazo de células de cualquier tipo, comenzando con las células usualmente disponibles en un individuo adulto”.

“Por ejemplo, nos gustaría ser capaces de encontrar una forma de obtener células ‘de respuesto’ cardíacas o cerebrales a partir de células de la piel o sangre”.

Shinya Yamanaka, nacido en 1962, trabajó en el Instituto Gladstone en San Francisco y como profesor de anatomía de la Universidad de California, en San Francisco. Actualmente es presidente de la Sociedad Internacional para la Investigación de Células Madre (ISSCR, por sus siglas en inglés) y docente de la Universidad de Kioto, Japón.

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Perseverance: estas son las mejores imágenes tomadas por el robot en sus primeras semanas en Marte

Te mostramos algunas de las mejores imágenes tomadas por el robot desde que comenzó a acercarse a la superficie de Marte.
3 de marzo, 2021
Comparte

Desde que aterrizó en el cráter Jezero de Marte en febrero pasado, el robot Perseverance de la NASA no deja de asombrarnos con las imágenes del “planeta rojo”.

Aunque a simple vista se parecen bastante a un desierto de algún lugar de la Tierra, la realidad es que las fotos provienen desde miles y miles de kilómetros, desde una depresión en el norte del ecuador del planeta.

En BBC Mundo te ofrecemos una selección de las nuevas imágenes enviadas por la misión que busca signos de vida microbiana, así como caracterizar la geología de Marte y su clima pasado.

First image taken from the High Resolution Imaging Experiment camera aboard Nasa's Perseverance Rover on the surface of Mars (19 February 2021)

Nasa/JPL-Caltech/MSSS
La primera imagen del robot Perseverance en la superficie de Marte fue tomada con la cámara del Experimento de Imágenes de Alta Resolución a bordo del Mars Reconnaissance Orbiter de la NASA.

Colour image of Mars taken by the Hazard Cameras on the underside of Nasa's Perseverance Mars rover

Nasa/JPL-Caltech
Esta es la primera imagen en color de alta resolución enviada por las cámaras en la parte inferior del Perseverance después de su aterrizaje.

Imagen del Mars Reconnaissance Orbiter

Nasa/JPL-Caltech/UArizona
Perseverance puede ser visto en esta imagen satelital desde su lugar de aterrizaje, seis días después. Las dos zonas brillantes a los lados son resultado de los cohetes durante la etapa de descenso.
Image of Mars rover and planet surface using its onboard Left Navigation Camera (Navcam), 1 March 2021

Nasa/JPL-Caltech
Perseverance lleva una carga de instrumentos científicos para recopilar información sobre la geología, la atmósfera y las condiciones ambientales del planeta. La cámara que tomó esta imagen está ubicada en lo alto del mástil del robot y ayuda a moverlo por la superficie.

Nasa's Perseverance Mars rover deck (20 February 2021)

Nasa/JPL-Caltech
Esta es una vista de la cubierta del robot y proporciona una buena perspectiva del llamado PIXL, uno de los instrumentos que se utilizará para identificar elementos químicos.

Mars surface captured by onboard Right Navigation Camera (Navcam), 1 March 2021

Nasa/JPL-Caltech
PIXL también incluye una cámara que toma primeros planos de las rocas y la superficie.

A panorama, taken on 21 February, by Mastcam-Z

Nasa/JPL-Caltech/ASU/MSSS
Este es la primera foto panorámica de 360 grados que tomo Perseverance. La fotografía fue ensamblada en la Tierra a partir de 142 imágenes individuales.
This wind-carved rock seen in first 360-degree panorama taken by the Mastcam-Z instrument

Nasa/JPL-Caltech/ASU/MSS
Esta roca tallada por el viento de Marte muestra cuántos detalles capturan los sistemas de cámaras. La roca ha sido denominada informalmente “foca del puerto”, por razones obvias.

A detail shot from the top of the panorama shows the rim of Jezero Crater

Nasa/JPL-Caltech/ASU/MSSS
Un detalle tomado desde la parte superior del robot muestra el borde del cráter Jezero, el lugar de aterrizaje de Perseverance. El borde está a varios kilómetros de distancia.
Mars surface using Left Mastcam-Z camera

Nasa/JPL-Caltech/ASU
Esta imagen fue tomada por el “ojo izquierdo” del sistema de cámaras llamado Mastcam-Z. Las cámaras izquierda y derecha están una al lado de la otra y apuntan en la misma dirección, proporcionando una vista estéreo similar a la que verían los ojos humanos.

Mars surface using Left Mastcam-Z camera

Nasa/JPL-Caltech/ASU
Tomada un par de días antes, usando la misma cámara, esta imagen fue seleccionada por votación pública como “Imagen de la Semana” para la Semana 2 de la misión del Perseverance.

Section of layering in a delta on the surface of Mars

NASA/JPL-Caltech/ASU
En esta imagen, el “ojo derecho” de Mastcam-Z se ha acercado a lo que probablemente sea una sección del antiguo delta del Jezero que se ha aislado de la formación principal como resultado de la erosión a lo largo del tiempo. Las capas de sedimentos del delta son uno de los objetivos científicos clave para el robot en su búsqueda de signos de vida antigua.

Mars Perseverance Descent Stage Down-Look Camera image

NASA/JPL-Caltech
Las primeras imágenes enviadas se tomaron durante el descenso del robot. Aquí, el Perseverance se baja con tres cuerdas de nailon y un “cordón umbilical”. Cuando las ruedas del robot tocaron el suelo, las ataduras se cortaron.

Parachute shot from the spacecraft's backshell during descent

Nasa/JPL-Caltech
Esta imagen también se realizó durante el descenso. Cuando el robot estaba a unos 11 km del suelo, la nave espacial desplegó el paracaídas supersónico para frenar la velocidad.


The surface of Mars directly below Nasa's Mars Perseverance rover is seen using the Rover Down-Look Camera

NASA/JPL-Caltech
Otra imagen del Jezero durante el descenso. El robot finalmente aterrizó hacia el área centro-izquierda de esta foto. El terreno elevado a la derecha es el delta remanente formado cuando un antiguo río fluyó hacia el cráter lleno del lago y dejó caer su sedimento. Las muestras de roca y suelo del delta se guardarán en tubos y se dejarán en el suelo para devolverlas a la Tierra en una fecha futura.

Todas las imágenes tienen derecho de autor: Nasa/JPL-Caltech


Ahora puedes recibir notificaciones de BBC News Mundo. Descarga nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=5nrw3i70k8c

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.