UNAM le revira a la CNDH: rechaza impunidad en caso de abuso a una estudiante
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync

UNAM le revira a la CNDH: rechaza impunidad en caso de abuso a una estudiante

El rector de la UNAM, José Narro, se dijo sorprendido por la publicación de la recomendación de la CNDH por el caso de abuso a una estudiante de 16 años, cuando todavía estaban a tiempo de poder dar una respuesta al caso.
13 de noviembre, 2013
Comparte

Luego que ayer martes 12 de noviembre la CNDH emitiera por primera vez una recomendación a la UNAM por un caso de abuso a una estudiante de 16 años, la máxima casa de estudios aceptó dicha recomendación, aunque rechazó que el caso haya quedado impune, tal y como denunció la Comisión en un comunicado. 

“Nosotros en la universidad siempre hemos estado en favor del cumplimiento de las tareas del respeto a los derechos humanos y vamos a aceptar la recomendación” de la Comisión Nacional de Derechos Humanos (CNDH), dijo el rector de la UNAM, José Narro.

Por ello, rechazó que este caso haya quedado impune. Tan no quedó impune, enfatizó, que “18 días después de que se cumplieron todos los procedimientos el profesor fue despedido; tan no quedó impune que la UNAM, con la representación del área jurídica de la oficina del abogado general, acompañó a los padres y a la estudiante afectada para que presentaran la denuncia penal”.

En entrevista, agregó que “en todo momento la universidad ha coadyuvado con el Ministerio Público”, por ello le sorprende que cuando todavía se está en el tiempo de dar la respuesta, plazo que se vence el próximo 20 de noviembre, se haga pública esta situación.

“Nosotros no tenemos ningún empacho en reconocer que cuando hay deficiencias se tienen que corregir, que cuando se tienen que tomar acciones se tienen que tomar, y eso es lo que hemos hecho a lo largo de este señalamiento”, aseguró.

Preocupa que detrás de todo haya “otras situaciones”

“Me preocupa que detrás de esta situación, de este manejo, existieran algunas otras situaciones, algunas otras condiciones; el propio presidente de la CNDH, que fue un miembro del personal académico de la universidad, sabe y tiene que reconocer que hay plazos, que hay formas, que de se tienen que cumplir dentro de la universidad”, dijo.

El rector afirmó que “en la universidad algunas cosas que nos está recomendando, que le agradecemos, que reconocemos y aceptamos, las hemos desarrollado desde hace mucho tiempo”.

“Incluso, desde antes de que existiera la CNDH, porque tuvimos nosotros primero la figura del ombudsman desde principios de los años 80 y fue uno de los orígenes de la CNDH”, añadió.

Por tanto, enfatizó, “tenemos que pedirles a los funcionarios que sean cuidadosos, que no hagan generalizaciones, que cumplan los plazos y que no nos den a pensar que porque ya no están con nosotros, porque tienen algún enojo con la institución, porque no cumplieron con sus tareas, ahora toman alguna actitud de esa naturaleza”.

Otros casos

Sin proporcionar mayor información, reconoció que ha habido otros casos de ese tipo que llegan al despido, a la sanción temporal de suspensión o de alguna otra naturaleza, “yo no voy a minimizar el problema”, indicó.

“No voy a decir que porque se trata de pocos casos se trata de un asunto menor, con uno que hubiera, nos tiene que indignar, como a mí me indignó cuando yo me enteré de esta situación y como di la instrucción de que se actuara con toda prontitud y en favor de la estudiante afectada”, remató Narro Robles.

Notimex

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Qué es la señal cósmica que llegó a la Tierra 7,000 millones de años después

La colisión de dos agujeros causó una onda gravitacional gigante en el medio del Universo.
2 de septiembre, 2020
Comparte
Ilustración.

LIGO-VIRGO
Ilustración de los dos agujeros negros poco antes de que se unieran.

Imagínate que toda la energía de ocho soles es liberada de inmediato.

Así fue la onda gravitacional que surgió tras la fusión dos agujeros negros, la más potente jamás observada.

La señal dejada por este evento viajó unos 7,000 millones de años para llegar a la Tierra, pero todavía fue lo suficientemente potente como para hacer que detectores láser en EE.UU. e Italia la sintieran en mayo del año pasado.

Según investigadores, la colisión de estos agujeros negros produjo una entidad con una masa 142 veces mayor que la de nuestro Sol.

Su magnitud es considerable. La ciencia ha rastreado durante mucho tiempo la presencia de agujeros negros en el cielo que han sido un poco más pequeños o incluso más grandes. Pero este nuevo hallazgo estrena una nueva clase de agujeros negros de tamaño intermedio que están en el rango de entre 100 y 1,000 masas solares.

Se trata de un análisis realizado por LIGO, de EE.UU., y Virgo, de Italia, una colaboración internacional que opera tres sistemas de detección de ondas gravitacionales súper sensibles en Estados Unidos y Europa.


Agujero negro

EHT Collaboration
Los agujeros negros son detectados por el impacto que tienen en su entorno.

¿Qué es un agujero negro?

  • Un agujero negro es una región en el espacio donde la materia ha colapsado sobre sí misma debido a la gravedad.
  • La fuerza gravitacional es tan fuerte que nada, ni siquiera la luz, puede escapar.
  • Los agujeros negros emergen del colapso gravitacional de una estrella grande.
  • Algunos son verdaderamente gigantes, miles de millones de veces más grandes que el Sol.
  • Se desconoce cómo se formaron estos cuerpos, encontrados en los centros de las galaxias.
  • Los agujeros negros son detectados por el impacto que tienen en su entorno
  • Producen ondas gravitacionales observables a medida que se juntan en espiral.

Los interferómetros láser de LIGO y Virgo “escuchan” las vibraciones del espacio-tiempo que son generadas por eventos cósmicos verdaderamente cataclísmicos, y el 21 de mayo de 2019 se activaron por una señal aguda que duró solo una décima de segundo.

Los algoritmos informáticos determinaron que la fuente de la señal fueron los momentos finales de dos agujeros negros que estaban en espiral, uno con una masa 66 veces mayor que la del Sol y el otro 85 más grande.

La distancia de esta fusión fue estimada en el equivalente a 150,000 millones de billones de kilómetros.

“Es increíble, de verdad”, dijo el profesor Nelson Christensen, del Observatorio de Côte d’Azur, en Francia.

“Esta señal se propagó durante siete mil millones de años. Así que este evento ocurrió justo a mitad de la creación del Universo, y es ahora que movió mecánicamente nuestros detectores aquí en la Tierra”, le explicó a la BBC.


Laboratorio de Virgo.

LIGO-VIRGO Collaboration
El laboratorio láser europeo Virgo tiene su sede en la provincia italiana de Pisa.

Ondas gravitacionales – Ondas en el espacio-tiempo

  • Las ondas gravitacionales son una predicción de la teoría de la relatividad general.
  • Pasaron décadas para que se pudiera desarrollar la tecnología para poder detectarlas directamente.
  • Son ondas en el espacio-tiempo generadas por eventos violentos.
  • La aceleración de masas produce ondas que se propagan a la velocidad de la luz
  • Las fuentes que pueden ser detectadas incluyen la fusión de agujeros negros y las estrellas de neutrones
  • LIGO-Virgo dispara láseres por medio de largos túneles en forma de L, y las ondas alteran la luz
  • La detección de ondas abre paso a investigaciones completamente nuevas en el Universo

La implicación de un cuerpo que mide 85 masas solares en la colisión ha hecho que los científicos mantengan la guardia porque la comprensión que tienen de cómo se forman los agujeros negros a partir de la muerte de una estrella no explica que algo de esta escala pueda suceder.

Al agotar su combustible nuclear, las estrellas experimentan un colapso del núcleo que da paso a la creación de un agujero negro, pero solo si son lo suficientemente grandes.

Pero la física que se supone que opera dentro de las estrellas sugiere que la producción de agujeros negros con el rango de masa de entre 65 y 120 masas solares es imposible.

Las estrellas moribundas que podrían producir tales entidades en realidad se desgarran y no dejan nada atrás.

Si la ciencia es correcta en este punto, entonces la explicación más probable de la existencia de un objeto de 85 masas solares es que sea el resultado de una unión de agujeros negros incluso anterior.

Y esto, según el profesor Martin Hendry, de la Universidad de Glasgow, en Reino Unido, tiene implicaciones sobre la evolución del Universo.

“Estamos hablando aquí de una jerarquía de fusiones, una posible vía para hacer agujeros negros cada vez más grandes”, explicó.

“Entonces, ¿quién sabe? Este agujero negro de 142 masas solares puede haberse fusionado con otros agujeros negros gigantescos, como parte de un proceso de acumulación que llega a formar agujeros negros supermasivos que se cree que están en el corazón de las galaxias”.

La colaboración entre LIGO y Virgo reportó sobre el evento del 21 de mayo de 2019 (catalogado como GW190521) en dos artículos académicos.

Uno está en la revista Physical Review Letters y describe el hallazgo. El segundo se puede encontrar en The Astrophysical Journal Letters y analiza las propiedades físicas de la señal y las implicaciones científicas.

El GW190521 es uno de los más de 50 activadores de ondas gravitacionales que se están investigando actualmente en los laboratorios de láser.

El ritmo de la investigación ha aumentado rápidamente desde que la colaboración detectó las primeras ondas gravitacionales, que les hizo ganar un Premio Nobel en 2015.

“Estamos aumentando la sensibilidad de los detectores y, sí, podríamos terminar detectando más de uno (agujero negro) cada día. ¡Vamos a tener una lluvia de agujeros negros!”, le dijo a la BBC la profesora Alessandra Buonanno, directora del Instituto Max Planck de Física Gravitacional en Potsdam (Alemania).

“Esto es hermoso porque aprenderemos mucho más sobre ellos”.


Gráfico sobre el interferómetro.

BBC

  • Un láser es conectado a la máquina y su rayo se divide en dos viajando por dos vías diferentes
  • Estas vías rebotan hacia adelante y hacia atrás y se amortiguan entre espejos
  • Finalmente, las dos luces se reúnen y son enviadas a un detector
  • Las ondas gravitacionales que atraviesan el laboratorio deben alterar la configuración
  • La teoría sostiene que deberían estirar y comprimir muy sutilmente su espacio
  • Esto debería mostrarse como un cambio en la longitud de los brazos de almacenamiento ligero
  • El fotodetector captura la señal en el haz recombinado

Ópticas

NSF/LIGO
Los láseres se actualizan constantemente con el objetivo de mejorar su sensibilidad.

Recuerda que puedes recibir notificaciones de BBC News Mundo. Descarga la última versión de nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=oFbgfkh4cj8

https://www.youtube.com/watch?v=vGFBBkfuOZk&list=PLLhUyPZ7578crTFv0q0Lb134UzgFe8735&index=20&t=0s

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.