Nuevas pistas sobre el origen de la vida
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync
Foto: Gerald Prins

Nuevas pistas sobre el origen de la vida

Antes del código genético que conocemos hoy pudo existir otro más sencillo establecido entre aminoácidos y nucleótidos, los ‘ladrillos’ que acabarían conformando las proteínas y los ácidos nucleicos como el ARN y el ADN. Además, ciertas propiedades de los aminoácidos, como su tamaño y polaridad, influyeron en cómo el ARN de transferencia los ordenaba para crear complejas y plegadas proteínas. Así lo reflejan dos estudios de científicos de la Universidad de Carolina del Norte (EU) que avanzan en el desconocido paso desde las primeras biomoléculas hasta las células de la Tierra.
Foto: Gerald Prins
Por Agencia Sinc
2 de junio, 2015
Comparte

El origen de la vida sigue siendo uno de los grandes misterios de la ciencia. Según los expertos, en los comienzos de nuestro planeta existiría una ‘sopa primordial’ con sustancias químicas sencillas que producirían aminoácidos. Estos se convertían en las proteínas necesarias para crear las células que, a su vez, darían lugar a las plantas y los animales.

Pero ¿cómo se ensamblaron los ‘bloques’ de aminoácidos en las proteínas que formaron la maquinaría celular? De momento no hay respuesta, pero ahora, dos estudios de la Universidad de Carolina del Norte (UNC), publicados en la revista PNAS y liderados por los científicos Richard Wolfenden y Charles Carter, arrojan nueva luz sobre el nacimiento de la vida hace 4 mil millones de años.

“Nuestro trabajo demuestra que la estrecha vinculación entre las propiedades físicas de los aminoácidos, el código genético y el plegamiento de proteínas probablemente fue esencial desde el principio, mucho antes de que las moléculas complejas llegaran a escena”, señala Carter, profesor de Bioquímica y Biofísica en la Escuela de Medicina de la UNC. “Esta estrecha interacción probablemente fue el factor clave en la evolución desde los primeros ‘bloques de construcción’ biológicos hasta los organismos”.

Estos nuevos hallazgos van en contra de la cuestionada hipótesis del mundo ARN. Esta molécula hoy desempeña un papel en la codificación, regulación y expresión de los genes; pero, según esta hipótesis, en los comienzos de la vida se alzó del caldo primigenio de aminoácidos y de las sustancias cósmicas, para formar proteínas cortas llamadas péptidos (pequeños grupos de aminoácidos), y luego, los organismos unicelulares.

Wolfenden y Carter argumentan que el ARN no actuó solo; de hecho, consideran que es tan probable que este ácido ribonucleico catalizara la formación de péptidos como que fuera al revés: que fueran los péptidos los que catalizaran el ARN. Este planteamiento supone un nuevo capítulo en la historia de cómo la vida evolucionó hace millones de años.

LUCA, el primigenio antecesor

La comunidad científica piensa que hace 3.600 millones años existió un ancestro común universal, llamado LUCA, del que evolucionaron todos los seres que viven actualmente en la Tierra. Es probable que fuera un organismo de una sola célula con unos pocos cientos de genes, pero ya tenía el diseño completo para la replicación del ADN, la síntesis de proteínas y la transcripción del ARN: la base del código genético que conocemos hoy.

LUCA tenía todos los componentes básicos, como los glúcidos, lípidos y proteínas de los organismos modernos. Desde aquel organismo en adelante, es relativamente fácil ver cómo se ha desarrollado la vida.  Pero antes de esos 3.600 millones años, sin embargo, no hay pruebas contundentes acerca de cómo LUCA surgió de un ‘caldero hirviente’ con los productos químicos que se formaron en la Tierra después de su creación hace alrededor de 4.600 millones de años.

“Sabemos mucho sobre LUCA y estamos empezando a aprender acerca de la química que produce los bloques de construcción como los aminoácidos, pero entre los dos hay un desierto de conocimiento”, insiste Carter. “Ni siquiera hemos sabido explorarlo”, añade el experto, aunque sus investigaciones representan un avance en este ‘desierto’.

“Ahora el doctor Wolfenden ha establecido las propiedades físicas de los veinte aminoácidos esenciales, y hemos encontrado una relación entre esas propiedades y el código genético”, apunta Carter. “Ese vínculo nos sugiere que hubo un segundo y más temprano código que hizo posible las interacciones péptido-ARN necesarias para poner en marcha un proceso de selección que podemos imaginar en la creación de la primera vida en la Tierra”.

Por lo tanto, subraya Carter, el ARN no tuvo que surgir de la sopa primordial. En su lugar, incluso antes de que hubiera células, parece más probable que hubiera interacciones entre los aminoácidos y nucleótidos que llevaron a la ‘cocreación’ de proteínas y ARN.

La complejidad desde la simplicidad

Por otra parte, las proteínas deben plegarse de forma específica para funcionar correctamente. En el primer artículo de PNAS, dirigido por Wolfenden, muestra que los tamaños y polaridades (forma en que se distribuyen entre agua y aceite) de los aminoácidos pueden ayudar a explicar el complejo proceso de plegamiento de las proteínas. Este fenómeno implica que una cadena de aminoácidos conforma una estructura tridimensional particular, con una función biológica específica.

Nuestros experimentos muestran cómo las polaridades de aminoácidos cambian constantemente a través de una amplia gama de temperaturas en formas que no afectarían las relaciones básicas entre la codificación genética y el plegamiento de las proteínas”, dice Wolfenden.

Esto fue importante para establecer que cuando la vida se estaba formando en los inicios de la Tierra, las temperaturas en nuestro planeta seguramente eran calientes, probablemente mucho más caliente de lo que son ahora o cuando se establecieron las primeras plantas y animales.

“La traducción del código genético es el nexo que conecta la química prebiótica a la biología”, destacan los investigadores

Una serie de experimentos bioquímicos con aminoácidos realizados en el laboratorio de Wolfenden revelaron que esas dos propiedades –tamaño y polaridad– de los aminoácidos fueron necesarias para explicar su comportamiento dentro de las proteínas plegadas y su actividad a temperaturas altas como las de la Tierra hace 4.000 millones de años.

En cuanto al segundo artículo de PNAS, liderado por Carter, se centra en cómo las enzimas aminoacil–ARNt sintetasas reconocen al ácido ribonucleico de transferencia (ARNt). Esas enzimas traducen el código genético. “Piense en el ARNt como un adaptador”, compara el investigador. “Un extremo del adaptador lleva un aminoácido particular; el otro lee el mapa genético para ese aminoácido en el ARN mensajero. Cada sintetasa empareja a cada uno de los veinte aminoácidos con su propio adaptador de modo que el mapa genético en el ARN mensajero fabrique fielmente la proteína correcta cada vez”.

El análisis de Carter muestra que los dos extremos diferentes de la molécula de ARNt en forma de L contenían códigos o reglas independientes que especifican qué aminoácido hay que seleccionar. El extremo del ARNt que llevó el aminoácido colocó cada aminoácido según su tamaño. Por su parte, el otro extremo de la molécula de ARNt en forma de L se llama el ‘anticodon’, y lee ‘codones’ (secuencias de tres nucleótidos de ARN en mensajes genéticos que seleccionan aminoácidos según su polaridad).

Los hallazgos de Wolfenden y Carter implican que las relaciones entre los ARNt y las dos propiedades físicas de los aminoácidos fueron cruciales durante la era primordial de la Tierra. A la luz de los trabajos previos de Carter, con muy pequeños núcleos activos de ARNt sintetasas llamados ‘urzymas’, ahora parece probable que la selección por tamaño precedió a la selección de acuerdo a su polaridad.

Resolver dos paradojas

Esta selección ordenada significó que las primeras proteínas no se plegaron necesariamente en formas únicas, y que sus estructuras originales evolucionaron más tarde. Carter destaca: “La traducción del código genético es el nexo que conecta la química prebiótica a la biología”. Los autores creen que la etapa intermedia de la codificación genética puede ayudar a resolver dos paradojas: cómo surgió la complejidad de la simplicidad, y cómo la vida dividió el trabajo entre dos tipos muy diferentes de polímeros (proteínas y ácidos nucleicos).

“El hecho de que la codificacion genética se desarrollara en dos etapas sucesivas (la primera muy simple) puede ser una de las razones de por qué la vida pudo surgir mientras que la tierra era todavía muy joven”, señala Wolfenden.

Un código mas temprano, que permitiera a los primeros péptidos codificados ligarse al ARN, puede haber proporcionado una ventaja selectiva decisiva, según los autores. Y este sistema primitivo podría entonces someterse a un proceso de selección natural, lanzando así una forma nueva y más biológica de evolución.

“La colaboración entre el ARN y los péptidos probablemente fue necesaria para que surgiera de forma espontánea la complejidad”, añade Carter, que concluye: “En nuestra opinión, fue un mundo péptido-ARN, no solo un mundo ARN”.

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Mutación del virus: qué se sabe de la nueva cepa del COVID detectada en Reino Unido

Desde su salto a los humanos hace aproximadamente un año, se han detectado unas dos mutaciones del SARS-CoV-2 cada mes. ¿Hay algo en la nueva cepa detectada en Inglaterra por lo que preocuparse especialmente?
19 de diciembre, 2020
Comparte

Tengo una sencilla regla simple para dimensionar las noticias que hablan de una “nueva variante” o una “nueva cepa” de coronavirus.

Hay que preguntarse: “¿Ha cambiado el comportamiento del virus?”

Un virus mutante suena instintivamente aterrador, pero mutar y cambiar es lo que hacen los virus.

La mayoría de las veces es un ajuste sin consecuencias o el virus se altera a sí mismo de tal manera que se debilita al infectarnos y la nueva variante simplemente desaparece.

De vez en cuando, sin embargo, da con una nueva fórmula ganadora.

Por el momento no hay nada que sugiera que la nueva variante del coronavirus detectada en el sureste de Inglaterra cause síntomas más graves o que afecte la capacidad de las vacunas.

Pero, según anunciaron autoridades británicas este sábado, las investigaciones preliminares sugieren que puede transmitirse más fácilmente.

Hay dos razones por las que los científicos la vigilan de cerca.

¿Más contagioso?

La primera es que los niveles de la variante son más altos en lugares donde se han registrado más casos.

Este sábado, al anunciar nuevas restricciones para Londres y el sureste de -similares a las del pasado mes de marzo-, el primer ministro británico, Boris Johnson, explicó que la propagación del virus en muchas partes del sureste de Inglaterra está “impulsada por la nueva variante del virus”.

Johnson reiteró que no hay evidencia de que cause síntomas más graves o una mayor mortalidad.

“Puede ser hasta un 70% más transmisible que la variante anterior”, agregó, puntualizando que son datos iniciales y están sujetos a revisión.

Es una señal de alerta, aunque se puede interpretar de dos formas.

Compras navideñas en Londres

PA Media
El aumento de contagios en el sureste de Inglaterra obligó al endurecimiento de medidas en ciudades como Londres.

El virus podría haber mutado para propagarse más fácilmente y está causando más infecciones.

Pero las variantes también pueden tener suerte e infectar a las personas adecuadas en el momento adecuado.

Una explicación para la propagación de la “cepa española” durante el verano, por ejemplo, fue simplemente que la gente se contagió durante las vacaciones y luego la llevó a casa.

Se necesitarán experimentos en el laboratorio para descubrir si esta variante realmente es más contagiosa que todas las demás.

El otro tema que interesa a los científicos es cómo ha mutado el virus.

“Tiene un número sorprendentemente grande de mutaciones, más de lo que cabría esperar, y algunas parecen interesantes”, me dijo el profesor Nick Loman del Consorcio COVID-19 Genomics UK (COG-UK).

Dos tipos de mutaciones

Hay dos conjuntos notables de mutaciones, y me disculpo por sus horribles nombres.

Ambos se encuentran en la proteína de pico, que es la llave que usa el virus para abrir la puerta a las células de nuestro cuerpo y apoderarse de ellas.

Coronavirus conectándose a las células del cuerpo

Science Photo Library
El coronavirus utiliza las proteínas de pico como llave para entrar a nuestro cuerpo.

La mutación N501 (te lo advertí) altera la parte más importante del pico, conocida como “dominio de unión al receptor”.

Aquí es donde el pico hace contacto por primera vez con la superficie de las células de nuestro cuerpo. Cualquier cambio que facilite la entrada del virus probablemente le dará una ventaja.

Se ve y huele como una adaptación importante”, dijo el profesor Loman.

La otra mutación -una supresión H69 / V70- ha surgido varias veces antes, por ejemplo en los visones infectados en Dinamarca.

La preocupación ha sido que los anticuerpos en la sangre de los supervivientes parecen menos eficaces contra esa variante del virus.

Pero, una vez más, se necesitarán más estudios de laboratorio para comprender realmente lo que está sucediendo.

“Sabemos que hay una variante, no sabemos nada sobre lo que eso significa biológicamente“, dijo el profesor Alan McNally, de la Universidad de Birmingham.

“Es demasiado pronto para hacer alguna inferencia sobre cuán importante puede ser o no”, agregó.

¿Y las vacunas?

Las mutaciones en la proteína de pico conducen a preguntas sobre la vacuna porque las tres candidatas principales -las desarrolladas por Pfizer/BioNTech, Moderna y Oxford/Astra Zeneca- entrenan al sistema inmunológico para que ataque el pico.

Sin embargo, el cuerpo aprende a atacar múltiples partes del pico. Es por eso que los funcionarios de salud siguen convencidos de que las vacunas funcionarán contra esta variante.

Doctor con una vacuna contra el covid

PA Media
La vacunación masiva ejercerá un tipo diferente de presión sobre el virus porque tendrá que cambiar para infectar a las personas que han sido inmunizadas.

Este es un virus que evolucionó en animales y dio el salto a infectar a las personas hace aproximadamente un año.

Desde entonces, se han estado detectado unas dos mutaciones al mes: toma una muestra hoy y compárala con las primeras de Wuhan en China y habría alrededor de 25 mutaciones de diferencia.

El coronavirus todavía está probando diferentes combinaciones de mutaciones para infectar adecuadamente a los humanos.

Ya hemos visto que esto sucedió antes: muchos consideran que el surgimiento y el dominio global de otra variante (G614) es un ejemplo de la mejor propagación del virus.

Pero pronto la vacunación masiva ejercerá un tipo diferente de presión sobre el virus, que tendrá que cambiar para infectar a las personas que han sido inmunizadas.

Y si esto impulsa la evolución del virus, es posible que tengamos que actualizar periódicamente las vacunas, como hacemos con las de la gripe.


Ahora puedes recibir notificaciones de BBC News Mundo. Descarga nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=ARrMFeZEfmU

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.