Despega ExoMars, la nueva era de exploración europea en Marte
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync
ESA

Despega ExoMars, la nueva era de exploración europea en Marte

La Agencia Espacial Europea y la rusa Roscosmos han lanzado Exomars 2016, una misión con dos protagonistas: el orbitador TGO, que analizará los gases de la atmósfera marciana, y el demostrador tecnológico Schiaparelli, que aterrizará con paracaídas en el planeta rojo.
ESA
Por Agencia Sinc
14 de marzo, 2016
Comparte

Cuando en 1877 el astrónomo italiano Giovanni Schiaparelli dibujó un mapa con los ‘canales’ de Marte, poco podía imaginar que una nave llevaría su nombre al planeta rojo casi 140 años después. El módulo de descenso Schiaparelli y el orbitador TGO (Trace Gas Orbiter) son los dos componentes de Exomars 2016, una misión que la Agencia Espacial Europea (ESA) y la rusa Roscosmos han lanzado hoy a las 10:31h (hora peninsular española) en un cohete Protón desde el cosmódromo de Baikonur (Kazajistán). El lanzador tardará más de 10 horas en poner la nave en su trayectoria correcta.

“Es difícil expresar con palabras la emoción que sentimos tras doce años de trabajo”, explica a Sinc Silvia Bayón, ingeniera de sistemas del satélite Exomars, quien conoce bien los avatares por lo que ha pasado la misión: “Inicialmente era solo europea, luego cambió a una cooperación con NASA en la se pasó de una arquitectura única a dos separadas –una en 2016 y otra en 2018–,  y finalmente hubo que cambiar a la colaboración con Roscosmos (Rusia), y en todo este proceso el diseño de la misión y el satélite han variado bastante, así como los análisis de los diversos lanzadores (Ariane, Atlas, Protón)”.

“Hasta hace dos o tres años había mucha gente que pensaba que no podríamos lanzar en 2016”, coincidieron en señalar Bayón y el director de ciencia de la ESA, Álvaro Giménez, durante un encuentro con la prensa celebrado la semana pasada en el Centro Europeo de Astronomía Espacial (ESAC) que tiene la ESA cerca de Madrid. “Es una misión impresionante, única, que pone a Europa dentro del esquema de exploración global de Marte y demuestra que los europeos también somos capaces de aterrizar allí”, subrayó Giménez.

El aspecto tecnológico es uno de los más importantes de ExoMars, ya que se ha lanzado la nave más grande enviada hasta ahora a Marte por la ESA, con más de 3.700 kg de masa (incluyendo los 3.130 de TGO y los 600 kg de Schiaparelli). Por comparar, Mars Express tenía una masa en el lanzamiento de 1.000 kg. También es la primera vez que se utiliza una arquitectura en la que una sonda despliega un aterrizador, desde que en la década de los 70 se hiciera con las misiones Viking de la NASA.

Está previsto que el próximo 16 de octubre se separare el módulo Schiaparelli de descenso y entrada (también llamado EDM) del orbitador TGO, que tres días después hará una maniobra –de unas dos horas y en la que se consumirá la mitad del combustible– para insertarse en la órbita de Marte. Justo ese día, el 19 de octubre, se posará Schiaparelli en la superficie marciana.

Secuencia de descenso del módulo Schiaparelli prevista para el próximo 19 de octubre.

Secuencia de descenso del módulo Schiaparelli prevista para el próximo 19 de octubre.

El objetivo de este módulo de descenso es demostrar tecnologías para la reentrada en la atmósfera marciana y el aterrizaje en su superficie, y todo durante los seis minutos que durará el descenso. “Van a ser los seis minutos más largos en la vida de mucha gente que ha trabajado en este proyecto”, adelanta Mariella Graziano, directora ejecutiva de sistemas espaciales en GMV, una de las siete empresas españolas que participan en el proyecto, quien también destaca, que al margen del retorno económico que supone la misión para la industria española, “el hombre necesita descubrir, y eso no se paga con nada”.

Vida corta del módulo Schiaparelli

ExoMars es una misión de exobiología y, por tanto, todos sus componentes han tenido que cumplir unos fuertes requisitos de protección planetaria, sobre todo en el módulo Schiaparelli. Una vez que ‘amartice’, podrá funcionar entre dos y ocho soles (días marcianos), dependiendo de la duración de sus baterías, y aunque incluye algunos instrumentos científicos para el análisis de la transparencia y condiciones de la atmósfera, su tarea principal es testar las tecnologías para el descenso y el aterrizaje.

El módulo (de 1,65 m de diámetro) probará un grueso escudo térmico, que podría enfrentarse a una tormenta de arena durante la reentrada, un paracaídas supersónico de 12 metros de diámetro y diversos sistemas de guiado, navegación y control, además de una estructura deformable para el impacto de tierra final. Su velocidad pasará de los 21.000 km/h a los que viajará a unos 122,5 km de altura hasta los menos de 11 km/h antes del impacto.

Respecto a TGO, además de llevar y soltar a Schiaparelli, incorpora cuatro instrumentos (la suite ACS de química atmosférica, el detector FREND de hidrógeno, la cámara CaSSIS y los espectrómetros NOMAD, con participación del Instituto de Astrofísica de Andalucía) que desarrollarán las tareas científicas y la plataforma de comunicaciones entre Marte y la Tierra. “Requiere mucho nivel de autonomía a bordo”, señala Bayón, “porque puede llegar a haber un retraso de 24 minutos en las comunicaciones con la Tierra y, en el verano de 2017, la conjunción solar de Marte interrumpirá dichas comunicaciones durante un mes”.

itador TGO (con unas dimensiones de 3,2 x 2 x 2 m y 17, 5 m con los paneles solares desplegados) también incluye un avance que se empleará por primera vez en una misión de la ESA: la utilización de una técnica del aerofrenado para alcanzar su órbita científica alrededor del planeta rojo, a una altitud de 400 km. sobre el suelo marciano.

Una vez que la sonda esté en esa órbita, comenzará su fase de ciencia, que durará un año marciano (687 días terrestres), y que se centrará en caracterizar los ‘gases traza’ (aquellos que representan menos de 1 % del volumen de la atmósfera marciana, como el metano, el vapor de agua, el dióxido de nitrógeno y el acetileno), así como en buscar respuestas a la pregunta de si alguna vez llegó a haber vida en el pasado del planeta rojo.

“Hace 3.500 millones de años, había agua líquida en la superficie de Marte y, posiblemente, vida también”, explica Leo Metcalfe, responsable de operaciones científicas de ExoMars 2016. De hecho, este planeta y la Tierra empezaron teniendo condiciones similares, y favorables para los seres vivos al principio del origen del sistema solar, hace unos 4.600 millones de años. Sin embargo, durante el denominado ‘bombardeo intenso tardío’, hace unos 4.000 millones de años, la superficie marciana comenzó a volverse más parecida a como la que hoy conocemos, y se transformó en un entorno muy hostil para la vida.

Para determinar hasta qué punto es así, TGO analizará la presencia de metano en la atmósfera marciana, un gas traza que en la Tierra tiene origen biológico o geológico, por procesos volcánicos. Metcalfe señala que el metano no sobrevive mucho tiempo en la atmósfera de Marte, es destruido por la radiación ultravioleta, así que si se encuentra allí, tiene que haber fuentes. “Aunque fuera de origen volcánico también sería importante, porque en nuestro planeta la combinación de actividad volcánica y agua líquida es fundamental para la vida”, subraya el experto.

Metcalfe también recuerda que en los últimos diez años se han acumulado bastantes evidencias de que se puede encontrar todavía en la superficie de Marte agua líquida. “Debería ser altamente salina para no congelarse. También hay cavernas, de origen volcánico, de las que no se sabe lo que hay debajo. Es posible que las condiciones bajo la superficie sean más compatibles con la existencia de vida”.

Próximo objetivo: enviar un rover

Para profundizar en esa investigación, los responsables de ExoMars tienen previsto enviar un rover que pueda taladrar la superficie marciana en 2018 como una segunda fase de la misión, aunque es probable las fechas se retrasen. Además, la posibilidad de que Marte aún pueda tener condiciones favorables para la vida abre la puerta a que esta misión suponga un primer paso hacia una futura misión tripulada al planeta rojo.

“La atención de todos los astronautas está puesta en esta misión”, destacó Pedro Duque por videoconferencia durante la presentación en ESAC. “La medición de los gases de Marte se va a conseguir con varios órdenes de precisión mayor de lo que se ha logrado hasta ahora, y esto es importante para determinar si merece la pena ir”.

Según el astronauta español lo que no es nada sencillo es concretar cuando un humano podrá pisar la superficie de Marte: “No es tanto una cuestión de tiempo medido en años, sino de la cantidad de gente y recursos que podamos dedicar a ello, porque va a ser difícil que resucite Kennedy”, bromeó Duque.

Agencia Sinc

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

'El núcleo del demonio': cómo era la tercera bomba atómica que EU alistaba para lanzar sobre Japón

Si Little Boy y Fat Man no lograban la rendición de Japón, EU ya tenía prácticamente listo a Rufus, un núcleo de plutonio que nunca explotó, pero sí causó muertes.
6 de agosto, 2021
Comparte

El 6 y 9 de agosto de 1945 Estados Unidos lanzó sobre Hiroshima y Nagasaki las dos únicas bombas nucleares que se hayan utilizado en una guerra.

Juntas fueron los ataques más letales que jamás hayan ocurrido, en los que se estima que murieron alrededor de 200.000 personas.

Desde la perspectiva de EE.UU., tenían el objetivo de presionar la rendición de Japón y poner fin a la Segunda Guerra Mundial.

Y en caso de que no fueran suficientes, Washington tenía prácticamente lista una tercera bomba atómica.

Su apodo era Rufus, y consistía en un núcleo de plutonio, similar al que se utilizó en la bomba Fat Man, que detonó sobre Nagasaki.

Rufus nunca llegó a convertirse en una bomba funcional, pero sí causó dos accidentes letales, por lo que quedó grabado en la historia como “el núcleo del demonio”.

Hiroshima

Getty
La bomba Little Boy causó devastación en Hiroshima.

“Era esencialmente igual al núcleo de Fat Man”, le dice a BBC Mundo Alex Wellerstein, historiador especialista en armas nucleares y autor del blog Nuclear Secrecy.

Eso quiere decir que podría haberse convertido en una bomba con capacidad de generar una explosión de unos 20 kilotones, como ocurrió en Nagasaki.

Según comunicaciones oficiales de EE.UU. citadas en un artículo de Wellerstein, una bomba fabricada a partir de Rufus tendría que haber estado lista para ser lanzada a partir del 17 o 18 de agosto de 1945.

En los primeros días de agosto de 1945, no estaba claro si dos bombas atómicas bastarían para doblegar a Japón, explica Wellerstein.

Solo después de su rendición el 15 de agosto “quedó claro que dos bombas habían sido ‘suficientes’, sino demasiado“, dice el experto.

Así que finalmente no fue necesario utilizar a Rufus.

“¿Qué ocurrió entre el 15 y el 21 de agosto? No lo sé”, escribe Wellerstein, pero lo que sí está documentado es que a partir del 21 de agosto, los investigadores del Laboratorio Los Álamos en Nuevo México, donde se diseñaron las bombas atómicas, comenzaron a utilizar este núcleo de plutonio para experimentos extremadamente peligrosos.

víctima de radiación.

Getty
Los efectos de la radiación pueden resultar letales para los humanos.

Cosquillas a un dragón

En 1945, los únicos núcleos de plutonio que se habían fabricado eran Rufus, Fat Man y el que se colocó en la bomba Gadget, que se utilizó en la prueba Trinity, el primer ensayo de una explosión nuclear que realizó EE.UU.

En Los Álamos, los investigadores querían averiguar cuál era el límite en que el plutonio se volvía supercrítico, es decir, querían saber cuál era el punto en que una reacción en cadena del plutonio desataría una explosión de radiación mortal.

Los Álamos

Getty
Los experimentos con Rufus se realizaron en el Laboratorio Los Álamos.

La idea era encontrar maneras más eficaces de lograr que un núcleo llegara al estado supercrítico y optimizar la carga de la bomba.

Manipular un núcleo de plutonio es una maniobra extremadamente delicada. Por eso los investigadores se referían a esos ejercicios como “hacerle cosquillas a la cola de un dragón”.

“Sabían que si tenían la desgracia de despertar a la bestia furiosa, terminarían quemados”, escribió el periodista Peter Dockrill en un artículo del portal Science Alert.

Según explica Wellerstein, quienes participaban en estos experimentos eran conscientes del riesgo, pero lo hacían porque era una forma de obtener datos valiosos.

Instantes letales

La primera víctima de Rufus fue el físico estadounidense Harry Daghlian, que para entonces tenía 24 años.

Fat Boy

Getty
Rufus serviría para usarse en una bomba de implosión como Fat Man.

Daghlian había trabajado en el Proyecto Manhattan, con el que EE.UU. fabricó sus primeras bombas nucleares.

El 21 de agosto de 1945 Daghlian se dio a la tarea de construir una pila de bloques de carburo de tungsteno alrededor de Rufus.

Su idea era ver si lograba crear un “reflector de neutrones” en los que rebotaran los neutrones lanzados por el núcleo y de esa manera llevarlo de manera más eficiente al punto crítico.

Era de noche y Daghlian estaba trabajando solo, violando los protocolos de seguridad, según lo documenta el portal Atomic Heritage Foundation.

El joven científico ya había apilado varios bloques, pero cuando estaba terminando de colocar el último, su dispositivo de monitoreo le indicó que si lo hacía, el núcleo podría volverse supercrítico.

Era como jugarse la vida en un jenga extremo.

Maniobró para retirar el bloque, pero infortunadamente lo dejó caer sobre el núcleo, que entró en estado supercrítico y generó una ráfaga de neutrones.

Núcleo de plutonio

Los Álamos National Laboratory
Esta es una reproducción del experimento en el que Daghlian apilaba bloques alrededor del núcleo de plutonio.

Además, su reacción fue desbaratar la torre de bloques, así que quedó expuesto a una dosis adicional de radiación gamma.

Esos instantes resultaron letales.

Durante 25 días Daghlian soportó la dolorosa intoxicación radioactiva hasta que finalmente murió en el hospital. Se calcula que recibió una dosis de 510 rem de radiación iónica.

El rem es la unidad de medida de la radiación absorbida por una persona. En promedio, 500 rem resultan mortales para un humano.

“Eso es todo”

Tan solo nueve meses después el dragón volvió a atacar.

El 21 de mayo de 1946 el físico estadounidense Louis Stolin estaba practicando un experimento que había hecho varias veces.

Los Álamos

Los Álamos National Laboratory
Esta es una reproducción de la sala en la que Stolin realizaba su experimento.

Para entonces, Stolin era el mayor experto del mundo en el manejo de cantidades peligrosas de plutonio, según indica Wellerstein.

Junto a un grupo de colegas, estaba mostrando cómo llevar un núcleo de plutonio -Rufus en este caso- al punto supercrítico.

El ejercicio consistía en unir dos mitades de una esfera de berilio, formando un domo en el que los neutrones rebotaran hacia el núcleo.

La clave para no causar un desastre era evitar que las dos medias esferas cubrieran totalmente el núcleo.

Para ello, Stolin utilizaba como separador un destornillador que servía de válvula de escape para los neutrones. De esa manera podía registrar cómo aumentaba la fisión, sin que la reacción en cadena llegara al punto crítico.

Los Álamos

Los Álamos National Laboratory
En medio del domo de berilio estaba el “núcleo del demonio”.

Todo iba bien, pero ocurrió lo único que no debía ocurrir.

A Stolin se le resbaló el destornillador y el domo se cerró por completo.

Fue solo un instante, pero bastó para que el núcleo llegara al punto crítico y liberara una corriente de neutrones que produjeron un intenso brillo azul.

“El flash azul fue claramente visible en toda la sala, a pesar de que estaba bien iluminada”, escribió en un reporte Raemer Schreiber, uno de los físicos que estaba viendo el experimento.

“El flash no duró más de unas décimas de segundo”.

Los Álamos

Los Álamos National Laboratory
Esta es una recreación del experimento en el que Stolin usaba un destornillador para impedir que el núcleo quedara totalmente cubierto.

Stolin reaccionó rápido y destapó el domo, pero ya era tarde: había recibido una dosis letal de radiación.

Nueve meses antes, él mismo había acompañado a su colega Daghlian durante sus últimos días de vida, y tenía claro que un destino similar le esperaba.

“Bueno, eso es todo”, fueron las primeras palabras que dijo, en todo resignado, después de que se le resbalara el destornillador, según lo recuerda Schreiber en su reporte, citado por Dockrill en Science Alert.

Las estimaciones indican que Stolin recibió en su cuerpo 2.100 rem de neutrones, rayos gamma y rayos x.

Su agonía duró nueve días.

En ese periodo sufrió náuseas, dolor abdominal, pérdida de peso y “confusión mental”, según lo describe Wellerstein en un reportaje de la revista The New Yorker.

Finalmente murió a los 35 años en el mismo cuarto del hospital en el que había muerto su colega Daghlian.

Irónicamente, apunta Wellerstein, Stolin estaba haciendo el procedimiento para que sus colegas aprendieran la técnica en caso de que él no estuviera presente.

bomba nuclear

Los Álamos National Laboratory
Las bombas nucleares son las armas más destructivas y mortales que se hayan creado.

El fin de la maldición

Los accidentes de Daghlian y Stolin sirvieron para que se fortalecieran las medidas de seguridad en los procedimientos con material radioactivo.

A partir de entonces, este tipo de ejercicios comenzaron a maniobrarse de manera remota, a una distancia de unos 200 metros entre el personal y el material radioactivo.

“Sus muertes ayudaron a incitar una nueva era de medidas de salud y seguridad”, dice el portal de Atomic Heritage Foundation.

Según los archivos de Los Álamos, el “núcleo del demonio” fue derretido en el verano de 1946 y se utilizó para fabricar una nueva arma.

“En realidad el núcleo del demonio no era demoníaco“, dice Dockrill.

“Si hay una presencia maligna aquí, no es el núcleo, sino el hecho de que los humanos se apresuraron a fabricar estas terribles armas”, sentencia el periodista.


Ahora puedes recibir notificaciones de BBC Mundo. Descarga la nueva versión de nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=6kQ0oCfV43I

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.