Ovillanta, la ingeniosa trampa hecha de llantas para acabar con el mosquito del zika
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync
Cuartoscuro

Ovillanta, la ingeniosa trampa hecha de llantas para acabar con el mosquito del zika

La ovillanta es una efectiva trampa gracias a que emula las condiciones favoritas de reproducción del mosquito. Hecha de llantas recicladas se trata de una solución al alcance de todos que promete buenos resultados.
Cuartoscuro
Por Ken Wysocky para BBC Mundo
16 de mayo, 2016
Comparte

En un avance que podría tener enormes consecuencias contra el zika y el dengue, un grupo de investigadores canadienses y mexicanos ha desarrollado una forma económica, efectiva y no contaminante de reducir drásticamente las poblaciones de mosquitos portadores de enfermedades.

¿Cómo? Utilizando un elemento omnipresente y donde, irónicamente, a las plagas de mosquitos les encanta reproducirse: los neumáticos usados.

Estamos volviendo en su contra un arma –llantas gastadas– que los mosquitos utilizan contra nosotros“, dice Gerardo Ulibarri, profesor asociado de Química Médica y Ecosalud de la Universidad Laurentian en Sudbury, Ontario (Canadá).

Ulibarri desarrolló un dispositivo, al que llama “ovillanta”, capaz de destruir las larvas del Aedes aegypti, el mosquito transmisor de los virus del Zika, el dengue, la chikungunya y la fiebre amarilla.

Para empezar, elimina la necesidad de utilizar pesticidas, dañinos para el medioambiente y con posibles riesgos colaterales para otros insectos (incluidos los que comen a los mosquitos).

Además, las generaciones posteriores de mosquitos pueden desarrollar resistencia a los pesticidas, haciendo que estos sean cada vez menos efectivos, explica Ulibarri.

Un problema hecho solución

La nueva herramienta también proporciona una respuesta, aunque limitada, a una de las cuestiones de eliminación de residuos más complicadas de gestionar en el mundo: qué hacer con los neumáticos usados.

Por otra parte, las trampas tienen un costo muy bajo, son relativamente fáciles de fabricar y hay un suministro prácticamente inagotable de materiales disponibles (cada año se gastan en el mundo unos 1.500 millones de neumáticos).

Ulibarri desarrolló otro tipo de trampa para ayudar a combatir un brote del virus del Nilo Occidental en Ontario en el año 2012, pero resultó ser muy costoso y difícil de transportar a los países en vías de desarrollo.

“Así que comencé a observar materiales locales y se me ocurrió utilizar llantas, pues casi el 30% de los mosquitos Aedes se reproducen en neumáticos de automóvil llenos de agua“, explica el científico.

“No lo teníamos pensado de esa manera; fue un hallazgo inesperado”.

Resultados de las pruebas

Las pruebas iniciales mostraron que la ovillanta es muy efectiva.

Durante una investigación de 10 meses en Guatemala, los investigadores descubrieron que 84 ovillantas, colocadas en siete barrios de la ciudad de Sayaxché, acabaron con más de 18.000 larvas de Aedes al mes.

Y estas cifras multiplican casi por siete los resultados de las trampas tradicionales.

También es digno de mención el hecho de que no se reportaran casos de dengue en la zona durante ese periodo; normalmente, ocurrían entre dos y tres docenas de casos durante ese tiempo, dice Ulibarri.

La ovillanta, que consiste en dos piezas de neumáticos de unos 50 centímetros de largo y en una válvula de drenaje, imita el lugar donde se reproducen los Aedes.

Un solo neumático puede dar lugar a tres ovillantas.

Así es como funciona: la mitad inferior del dispositivo se llena de unos dos litros de agua y se añaden las llamadas “tiras de aterrizaje” (por ejemplo, pedazos de papel pellón) en donde las hembras de mosquito pondrán sus huevos.

___________

Otro “vehículo” de destrucción

Reutilizar neumáticos usados no es el único enfoque novedoso para matar a los mosquitos portadores de enfermedades.

MotoRepellent es un pequeño dispositivo portátil desarrollado en Asia que permite dispensar un aceite repelente para mosquitos no tóxico a través de una máquina que es casi tan abundante en Asia como los mosquitos: la motocicleta.

MotoRepellent se adhiere magnéticamente al tubo de escape de la motocicleta.

El calor de los gases de escape activa el aceite y emite un olor que repele a los moquitos.

___________

“Los mosquitos no dejarán sus huevos en una superficie seca, pero necesitan humedad para salir del cascarón”, dice Ulibarri.

“En un clima cálido debes añadir agua de vez en cuando, porque se evapora muy rápidamente”, agrega.

El agua en el dispositivo debe ser drenada dos veces por semana en un recipiente cubierto con un filtro; algo tan simple como un pedazo de tela blanca funciona bien, pues el color hace a las larvas claramente visibles, explica.

Después de eso, hay que destruir los huevos, verter el agua de nuevo en la ovillanta (llenándola de agua fresca) e instalar dos nuevas tiras de aterrizaje.

“Es importante reciclar el agua porque una vez eclosionan los huevos, liberan una feromona que les indica a otros mosquitos que es un lugar bueno y seguro para depositar sus huevos”, dice Ulibarri, cuyo trabajo está financiado por Grand Challenges Canada, una agencia gubernamental que promueve proyectos en materia sanitaria a escala mundial.

Comprender al enemigo es la mejor manera de luchar contra él“, añade Ulibarri.

Normalmente, suele tomar en torno a un mes –el ciclo de vida promedio de una hembra Aedes en climas cálidos– antes de que la trampa comience a hacer mella en las poblaciones locales de mosquitos.

Tan solo hacen falta dos ollivantas por acre (más de 4.000 m2) para reducir significativamente las poblaciones de mosquitos, pero cuantas más haya, mejores serán los resultados, dice Uibarri.

Hasta ahora, los dispositivos fueron probados en Guatemala y México, y Ulibarri dice que han invitado a su equipo a hacer más pruebas en Brasil y Paraguay.

Pero ¿cuál es el potencial de la ovillanta?

“Creo que si se utiliza de manera adecuada puede tener un gran impacto en diferentes enfermedades como el zika, el dengue, la chikungunya y la fiebre amarilla”, explica el científico.

“Y, con diferentes atrayentes, también podemos luchar contra los mosquitos Culex y Anopheles, que portan los virus del Nilo Occidental y de la malaria”, dice Ulibarri.

“Si trabajamos todos juntos, tal vez podamos hacer la diferencia”, agrega.

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Mutación del virus: qué se sabe de la nueva cepa del COVID detectada en Reino Unido

Desde su salto a los humanos hace aproximadamente un año, se han detectado unas dos mutaciones del SARS-CoV-2 cada mes. ¿Hay algo en la nueva cepa detectada en Inglaterra por lo que preocuparse especialmente?
19 de diciembre, 2020
Comparte

Tengo una sencilla regla simple para dimensionar las noticias que hablan de una “nueva variante” o una “nueva cepa” de coronavirus.

Hay que preguntarse: “¿Ha cambiado el comportamiento del virus?”

Un virus mutante suena instintivamente aterrador, pero mutar y cambiar es lo que hacen los virus.

La mayoría de las veces es un ajuste sin consecuencias o el virus se altera a sí mismo de tal manera que se debilita al infectarnos y la nueva variante simplemente desaparece.

De vez en cuando, sin embargo, da con una nueva fórmula ganadora.

Por el momento no hay nada que sugiera que la nueva variante del coronavirus detectada en el sureste de Inglaterra cause síntomas más graves o que afecte la capacidad de las vacunas.

Pero, según anunciaron autoridades británicas este sábado, las investigaciones preliminares sugieren que puede transmitirse más fácilmente.

Hay dos razones por las que los científicos la vigilan de cerca.

¿Más contagioso?

La primera es que los niveles de la variante son más altos en lugares donde se han registrado más casos.

Este sábado, al anunciar nuevas restricciones para Londres y el sureste de -similares a las del pasado mes de marzo-, el primer ministro británico, Boris Johnson, explicó que la propagación del virus en muchas partes del sureste de Inglaterra está “impulsada por la nueva variante del virus”.

Johnson reiteró que no hay evidencia de que cause síntomas más graves o una mayor mortalidad.

“Puede ser hasta un 70% más transmisible que la variante anterior”, agregó, puntualizando que son datos iniciales y están sujetos a revisión.

Es una señal de alerta, aunque se puede interpretar de dos formas.

Compras navideñas en Londres

PA Media
El aumento de contagios en el sureste de Inglaterra obligó al endurecimiento de medidas en ciudades como Londres.

El virus podría haber mutado para propagarse más fácilmente y está causando más infecciones.

Pero las variantes también pueden tener suerte e infectar a las personas adecuadas en el momento adecuado.

Una explicación para la propagación de la “cepa española” durante el verano, por ejemplo, fue simplemente que la gente se contagió durante las vacaciones y luego la llevó a casa.

Se necesitarán experimentos en el laboratorio para descubrir si esta variante realmente es más contagiosa que todas las demás.

El otro tema que interesa a los científicos es cómo ha mutado el virus.

“Tiene un número sorprendentemente grande de mutaciones, más de lo que cabría esperar, y algunas parecen interesantes”, me dijo el profesor Nick Loman del Consorcio COVID-19 Genomics UK (COG-UK).

Dos tipos de mutaciones

Hay dos conjuntos notables de mutaciones, y me disculpo por sus horribles nombres.

Ambos se encuentran en la proteína de pico, que es la llave que usa el virus para abrir la puerta a las células de nuestro cuerpo y apoderarse de ellas.

Coronavirus conectándose a las células del cuerpo

Science Photo Library
El coronavirus utiliza las proteínas de pico como llave para entrar a nuestro cuerpo.

La mutación N501 (te lo advertí) altera la parte más importante del pico, conocida como “dominio de unión al receptor”.

Aquí es donde el pico hace contacto por primera vez con la superficie de las células de nuestro cuerpo. Cualquier cambio que facilite la entrada del virus probablemente le dará una ventaja.

Se ve y huele como una adaptación importante”, dijo el profesor Loman.

La otra mutación -una supresión H69 / V70- ha surgido varias veces antes, por ejemplo en los visones infectados en Dinamarca.

La preocupación ha sido que los anticuerpos en la sangre de los supervivientes parecen menos eficaces contra esa variante del virus.

Pero, una vez más, se necesitarán más estudios de laboratorio para comprender realmente lo que está sucediendo.

“Sabemos que hay una variante, no sabemos nada sobre lo que eso significa biológicamente“, dijo el profesor Alan McNally, de la Universidad de Birmingham.

“Es demasiado pronto para hacer alguna inferencia sobre cuán importante puede ser o no”, agregó.

¿Y las vacunas?

Las mutaciones en la proteína de pico conducen a preguntas sobre la vacuna porque las tres candidatas principales -las desarrolladas por Pfizer/BioNTech, Moderna y Oxford/Astra Zeneca- entrenan al sistema inmunológico para que ataque el pico.

Sin embargo, el cuerpo aprende a atacar múltiples partes del pico. Es por eso que los funcionarios de salud siguen convencidos de que las vacunas funcionarán contra esta variante.

Doctor con una vacuna contra el covid

PA Media
La vacunación masiva ejercerá un tipo diferente de presión sobre el virus porque tendrá que cambiar para infectar a las personas que han sido inmunizadas.

Este es un virus que evolucionó en animales y dio el salto a infectar a las personas hace aproximadamente un año.

Desde entonces, se han estado detectado unas dos mutaciones al mes: toma una muestra hoy y compárala con las primeras de Wuhan en China y habría alrededor de 25 mutaciones de diferencia.

El coronavirus todavía está probando diferentes combinaciones de mutaciones para infectar adecuadamente a los humanos.

Ya hemos visto que esto sucedió antes: muchos consideran que el surgimiento y el dominio global de otra variante (G614) es un ejemplo de la mejor propagación del virus.

Pero pronto la vacunación masiva ejercerá un tipo diferente de presión sobre el virus, que tendrá que cambiar para infectar a las personas que han sido inmunizadas.

Y si esto impulsa la evolución del virus, es posible que tengamos que actualizar periódicamente las vacunas, como hacemos con las de la gripe.


Ahora puedes recibir notificaciones de BBC News Mundo. Descarga nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=ARrMFeZEfmU

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.