¿Quedarnos sin agua sirvió para reparar el Sistema Cutzamala? Solo a medias
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync
Cuartoscuro

¿Quedarnos sin agua sirvió para reparar el Sistema Cutzamala? Solo a medias

La finalidad de los trabajos era interconectar dos líneas del Cutzamala, sin embargo la colocación de una pieza falló, lo que alargó el corte de agua. La Conagua asegura que los trabajos cumplieron su objetivo.
Cuartoscuro
7 de noviembre, 2018
Comparte

El Valle de México sufre de uno de los mayores cortes de agua en su historia. El propósito de interrumpir el suministro era darle mantenimiento al Cutzamala, uno de los sistemas de agua potable más grande del mundo.

Pero el corte al suministro de agua a casi 4 millones de personas de Ciudad de México y el Estado de México no sirvió de mucho, pues la colocación de un nuevo tubo para unir dos líneas de agua falló, por lo que los trabajos fueron parciales.

Aunque para la Conagua se cumplió con el objetivo principal de instalar otra línea, aunque por el momento ésta no podrá utilizarse.

El domingo por la madrugada la Conagua anunció que los trabajos habían terminado y que se comenzaría el bombeo de agua hacia el Valle de México. Y así fue, pero, para la tarde del domingo se presentó una falla.

“(…) habíamos echado a andar los motores para empezar a bombear el agua hacia el Valle y empezarla a subir, lo que se presentó es que el agua al interconectarse entre las dos Líneas, en la pieza de la “K”, es decir en el enlace entre las dos, provocó un movimiento de la pieza, se arrastró sobre el suelo”, explicó Roberto Ramírez de la Parra, titular de la Conagua.

cutzamala

Trabajos en el Sistema Cutzamala.

El movimiento fue mayor al que esperaban. Como medida de precaución, se tuvo que suspender el bombeo del agua para disminuir la presión que se ejercía sobre esta pieza.

La pieza “K” se colocó para era interconectar las líneas 1 y 2.

“El objetivo de tener esta interconexión entre las dos líneas era que pudieran usar los motores de una de las líneas, pero al final usar las dos para poder alimentar al Sistema Cutzamala o usar la línea 1 o la línea 2 en forma independiente, de acuerdo a los motores que teníamos”, explicó Ramírez de la Parra.

Lo que sí se logró, añadió el titular de Conagua, fue colocar una “Y” para poder alimentar las dos líneas por separado.

¿Y qué pasará ahora?

El titular de Conagua señaló que se van a poder utilizar las dos líneas en forma independiente, pero por el momento se inhabilitó la línea 2. En la línea 1 se sustituyó el tubo y se colocó uno nuevo por seguridad y para que corra el agua de forma uniforme, aunque la “K” esté inhabilitada

“En este momento tenemos inhabilitada la línea 2, porque ya cortamos en este momento la “K” para la línea 1 y poder, de alguna manera, sustituir el tubo de la “K” por otro tubo, porque no queremos tapar los hoyos de la “K””, explicó.

Ramírez de la Parra dijo que harán los mismos trabajos con la línea 2 pero que esto será después pues por ahora la prioridad es restablecer el servicio a través de la línea 1.

cutzalama

Trabajos en el Sistema Cutzamala.

La Conagua dijo que investigarán qué sucedió y por qué se movió la pieza “K”.

Pese a los contratiempos que alargaron el corte de agua tres días más, la Conagua aseguró que los trabajos de mantenimiento cumplieron con el objetivo principal de instalar la Línea de Alta Presión 2, lo que permitirá en el futuro dar mantenimiento al Sistema sin parar operaciones e interrumpir el suministro.

El vocero de la Comisión Nacional del Agua (Conagua), José Luis Alcudia Goya, aseguró que en las obras de mantenimiento y reparación del Sistema Cutzamala, la pieza conocida como “K” invertida no costará un peso más, pues todavía se analiza la forma en que será instalada.

En entrevista en Despierta con Loret, afirmó que pese a la falla en la colocación de esa pieza, las obras en el Sistema Cutzamala fueron positivas, pues ya se cuenta con dos líneas de abastecimiento de la planta de bombeo a la torre de oscilación, que era el objetivo principal.

“La K no era parte del objetivo principal sino de la redundancia del sistema, sin embargo con las obras de la planta de bombeo se logra el objetivo”, reiteró.

Con información de Notimex.

 

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Los miniórganos creados por científicos que revolucionan el conocimiento sobre COVID

Desde minipulmones a minivasos sanguíneos. Técnicas desarrolladas hace pocos años permiten evaluar rápidamente posibles tratamientos y entender mejor cómo el coronavirus afecta a diferentes partes del cuerpo.
5 de diciembre, 2020
Comparte

Imagina tomar un puñado de células humanas de diferentes tipos y, después de una serie de procedimientos, transformarlas en un órgano en miniatura, que funciona y puede ser observado a simple vista.

Esto ya es posible hoy: los miniórganos (u organoides, nombre preferido entre los científicos) son una herramienta poderosa, que ayuda a comprender cómo el SARS-CoV-2, el coronavirus responsable de la pandemia actual, causa daños en diferentes partes de nuestro cuerpo.

Gracias a esta tecnología, los expertos evaluaron varios tratamientos posibles y entendieron rápidamente que la covid-19 no era solo una enfermedad que afectaba al sistema respiratorio, sino que tenía repercusiones en el corazón, intestino, riñones e incluso en el cerebro.

¿Pero cómo se crea un miniórgano? ¿Y qué ventajas tiene en comparación con otros métodos más antiguos, como los cultivos celulares y las cobayas de laboratorio?

Volver al pasado para proyectar el futuro

La materia prima básica para la construcción de un organoide son las células simples presentes en la piel o el sistema urinario. Tras la selección, los científicos realizan un procedimiento que hace que estas unidades se conviertan en células madre.

Es como si esas células retrocedieran en el tiempo. A través de una transformación genética se vuelven células madre nuevamente”, señaló la neurocientífica Marília Zaluar Guimarães, del Instituto D’Or de Investigación y Educación, en Río de Janeiro (IDor).

La descripción de este proceso biológico y la tecnología capaz de hacerlo factible le valieron al británico John Gurdon y al japonés Shinya Yamanaka el Premio Nobel de Medicina y Fisiología en 2012.

Placa de petri circular con pequeñas esferas dentro que representan los minicerebros

Getty Images
Esta ilustración muestra el tamaño de minicerebros en una placa de Petri y cómo pueden ser apreciados a simple vista.

Pero esa es apenas una parte de la historia. Después de que las células “retroceden en el tiempo”, es preciso realizar otro paso. “Hacemos que estas células madre se diferencien y se especialicen nuevamente”, agregó Guimarães, quien también es profesora de la Universidad Federal de Río de Janeiro (UFRJ) en Brasil.

En otras palabras, es posible tomar una célula de la piel y, siguiendo unos pocos pasos, lograr una metamorfosis para que se convierta en una neurona o en un glóbulo rojo.

La gran ventaja es que los organoides no son solo un montón de células que pueden ser analizadas con la ayuda de un microscopio. Hablamos aquí de formaciones más complejas, que agrupan a más de un tipo de célula y, a menudo, son visibles a simple vista. Realmente se trata de un órgano en escala reducida.

“Los minicerebros, por ejemplo, son esféricos, pero no tienen la misma forma que el órgano real. Lo que nos permite saber que esa estructura se asemeja al original son sus características celulares y bioquímicas”, explicó el biólogo Daniel Martins de Souza, de la Universidad Estadual de Campinas (Unicamp) en Brasil.

Los orígenes

En una perspectiva histórica, la posibilidad de construir miniórganos es muy reciente. Los científicos solo han podido avanzar significativamente en este tema en los últimos 10 años.

Pero en este período breve los organoides ya hicieron grandes contribuciones a la ciencia. Uno de los mayores ejemplos de esto ocurrió durante la epidemia de Zika, que preocupó al mundo en 2015 y 2016.

Bebé en Brasil que padece microcefalia con una médica

Getty Images
Investigaciones con las nuevas técnicas permitieron demostrar que el Zika afecta las células del sistema nervioso e inhibe su crecimiento, provocando el síndrome congénito que causa microcefalia en bebés.

Transmitido por la picadura del mosquito Aedes aegypti, el virus causa síntomas relativamente simples, como fiebre baja, dolor y enrojecimiento de los ojos.

Pero la explosión de casos de microcefalia (cuando el bebé nace con un cráneo y un cerebro más pequeños de lo habitual) en la región noreste del país fue una señal de alerta: ¿podría una infección de zika durante el embarazo estar relacionada con esta complicación grave?

La sospecha se confirmó gracias a la investigación con organoides. En el laboratorio, un equipo liderado por el neurocientífico Stevens Rehen, de UFRJ e IDor, utilizó minicerebros para demostrar que el Zika en realidad afecta las células del sistema nervioso e inhibe su crecimiento, provocando el síndrome congénito asociado con la infección, que causa microcefalia y otros problemas de salud en los bebés.

“Esta fue la primera vez que se utilizó el modelo de los organoides para comprender una enfermedad viral”, recordó Guimarães.

Las ventajas

En las últimas décadas, los cultivos celulares y las cobayas han sido los principales medios para realizar estudios preliminares con candidatos a fármacos o vacunas.

La idea es comprender cómo actúan estas nuevas moléculas a una escala menor y más controlada antes de pasar a los ensayos clínicos con seres humanos.

Estas metodologías también permiten comprender cómo una determinada enfermedad afecta al organismo, aunque sea en forma simplificada.

Ilustración que muestra coronavirus y el cuerpo de un hombre

Getty Images
Sin los organoides, el conocimiento sobre la covid-19 tardaría mucho más en estar disponible.

Pero las alternativas más antiguas tienen una serie de limitaciones, comenzando por su propia simplicidad, que no reproduce las mismas características de la vida real.

“Los organoides, en cambio, están compuestos por diferentes células y tienen una estructura tridimensional. Por eso, tienen funciones más similares a lo que sucede en la realidad“, afirmó el experto en farmacéutica Kazuo Takayama, profesor de la Universidad de Kioto en Japón.

En el caso de las cobayas también existe una limitación en la cantidad de animales disponibles para su uso en experimentos. “Es posible cultivar miniórganos en el laboratorio casi infinitamente, por lo que pueden usarse para probar nuevos medicamentos a gran escala”, agregó Takayama.

Conocimiento optimizado

Durante una pandemia como la que estamos viviendo, este enfoque moderno también permitió acelerar algunos procesos y obtener información esencial rápidamente.

Sin los organoides, el conocimiento sobre la covid-19 tardaría mucho más en estar disponible. Esto, a su vez, obstaculizaría el avance de la ciencia y retrasaría aún más la llegada de métodos seguros y eficaces de diagnóstico, prevención y tratamiento.

Ilustración de un vaso sanguíneo, células de la sangre y un coronavirus

Getty Images
Las investigaciones con miniórganos permitieron entender qué células invade el coronavirus. Actualmente se sabe que el patógeno puede afectar los vasos sanguíneos.

Veamos ejemplos prácticos de cómo sucedió esto en los últimos meses. Ante la emergencia sanitaria mundial, muchos expertos quisieron evaluar si ya existían medicamentos disponibles en el mercado que pudieran combatir el virus o mitigar sus daños.

Muchas de estas terapias se probaron en organoides. Aquellos tratamientos que no funcionaron de inmediato fueron descartados. Y los medicamentos que mostraron algún efecto positivo inicial evolucionaron más rápidamente hacia las siguientes fases de investigación. Imagina cuánto tiempo se ahorró con esta evaluación inicial.

Pero las aplicaciones fueron más allá del área farmacéutica. Investigadores en Japón y Estados Unidos se centraron en los minipulmones y descubrieron que el SARS-CoV-2 invade y destruye células del sistema respiratorio. Esto, a su vez, puede generar una respuesta inflamatoria muy fuerte y dañina para la salud de la persona afectada por la infección.

“En general, los organoides nos permitieron comprender qué células humanas invade el coronavirus y utiliza para replicarse. Nuestro grupo demostró que esto sucede en el intestino, lo que explica los síntomas gastrointestinales que se observan en muchos pacientes”, señaron los investigadores Joep Beumer y Maarten Geurts, del Instituto Hubrecht, en Holanda.

Otro experimento realizado en la Universidad de la Columbia Británica en Canadá y en el Instituto de Biotecnología Molecular en Viena, Austria, construyó vasos sanguíneos en miniatura. De esa forma se pudo observar que el virus de la covid-19 invade el endotelio (la capa interna de las venas y arterias).

Esto tiene dos implicaciones principales. El primero es la formación de coágulos que bloquean el paso de la sangre y pueden desencadenar un ataque cardíaco, un derrame cerebral o una trombosis. En segundo lugar, existe la sospecha de que a través de la circulación sanguínea el patógeno puede “filtrarse” a diferentes áreas del cuerpo y afectar otros órganos importantes.

Las iniciativas no terminan ahí. Se sigue trabajando con organoides para evaluar posibles huellas del coronavirus en el hígado, los riñones, el corazón y el cerebro.

Foto tomada con un microscopio que muestra neuroesferas y coronavirus

Carolina Pedrosa – IDor
Neuroesferas infectadas por SARS-CoV-2. Los puntos azules son los núcleos de las células. La zona verde es el coronavirus.

Los límites

A pesar de tener tantas ventajas, los organoides no son perfectos y no permiten encontrar todas las respuestas.

“Esta es un área que está dando sus primeros pasos y enfrenta importantes desafíos. Muchas de estas estructuras están hechas con células aún inmaduras, lo que significa que no son 100% comparables a los órganos de un adulto“, afirmó Núria Montserrat Pulido, profesora del Instituto de Bioingeniería de Cataluña, España.

La bioquímica Shuibing Chen, de la Universidad de Cornell, en Estados Unidos, destacó la gran variabilidad entre los modelos de miniórganos utilizados por los grupos de investigación.

“Necesitamos estandarizar este material para comprender las aplicaciones de nuestros esfuerzos en el mundo real”, advirtió.

La inversión financiera es otra barrera a considerar en este contexto. “Los materiales que utilizamos son caros y estamos trabajando para crear sistemas rentables”, añadió Chen.

Souza destacó un impedimento más: los miniórganos son (aún) estructuras aisladas, que no interactúan con otros sistemas del cuerpo humano. Por ello no es posible comprender cómo los efectos del coronavirus en los riñones, por ejemplo, repercuten en el corazón o en el intestino.

“Tal vez en el futuro tendremos diferentes organoides conectados, para que interactúen en el laboratorio”, agregó Souza.

Si los organoides ya han aportado tanto conocimiento en sus primeros pasos, imagina lo que podrán hacer cuando sean perfeccionados.


Ahora puedes recibir notificaciones de BBC News Mundo. Descarga nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=3KQvURTJmgA

Si los organoides ya han aportado tanto conocimiento en sus primeros pasos, imagina lo que podrán hacer cuando sean perfeccionados.

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.