Se revocó una suspensión, ¿qué sigue para Santa Lucía y la construcción del aeropuerto?
close
Recibe noticias a través de nuestro newsletter
¡Gracias! Desde ahora recibirás un correo diario con las noticias más relevantes.
sync
Cuartoscuro

Se revocó una suspensión, ¿qué sigue para Santa Lucía y la construcción del aeropuerto?

El colectivo #NoMásDerroches interpuso 147 amparos contra el proyecto, tanto en el Estado de México como en la CDMX; después, solicitó la suspensión de las obras en al menos 20 juzgados.
Cuartoscuro
9 de octubre, 2019
Comparte

Este martes un juez revocó una suspensión que él mismo había dictado contra la construcción de un nuevo aeropuerto civil en la Base Aérea de Santa Lucía; pero eso no significa que las obras vayan a comenzar ya, puesto que todavía hay otras seis suspensiones vigentes.

Estas se han otorgado a partir de una ola de amparos que interpuso el colectivo #NoMásDerroches, integrado por organizaciones civiles como Impunidad Cero, México ¿Cómo Vamos?, Mexicanos Contra la Corrupción y la Impunidad, y otras. A título personal, miembros del colectivo metieron un total de 147 amparos, no iguales pero muy similares, tanto en el Estado de México como en la Ciudad de México, ya que por estrategia buscaban que llegaran a múltiples juzgados y tuvieran más posibilidades de que algunos fueran otorgados, explica en entrevista Gerardo Carrasco, abogado del colectivo.

Después se solicitó la suspensión en entre 20 y 30 juzgados, según veían posibilidades de éxito, que empezaron a otorgar unas y rechazar otras, antes de que todos los recursos jurídicos sobre el tema acabaran en el mismo juzgado que ayer echó atrás una de las suspensiones.

Esta es la cronología del caso

El 30 de mayo se otorgó la primera suspensión provisional contra el aeropuerto en Santa Lucía. La dio el Primer Tribunal Colegiado en Materia Administrativa del Segundo Circuito del Estado de México.

Aunque el 21 de junio fue desechada por un juez, el Cuarto de Distrito, todo ese mes se estuvieron procesando las solicitudes de amparo y de suspensión del inicio de la construcción.

Las resoluciones ordenaban detener las obras por distintos factores: hasta que el Gobierno Federal demostrara que tenía todas las autorizaciones ambientales correspondientes, hasta verificar que contaba con los estudios de seguridad exigidos por la Ley de Aeropuertos y su Reglamento, cuando hubiera autorización del Instituto Nacional de Antropología e Historia (INAH), estudios de viabilidad aeronáutica, estrategia de viabilidad social.

Para el 7 de junio se había ordenado la primera suspensión definitiva, y el 11, el Décimo Tribunal Colegiado en Materia Adimnistrativa del Primer Circuito fue el primero que dio una resolución para mantener el proyecto de Nuevo Aeropuerto Internacional de México (NAIM) en Texcoco, que llevaba más del 30% de avance cuando Andrés Manuel López Obrador asumió la presidencia y ordenó pararlo.

Otra suspensión, del 24 de junio, no solo ordenaba mantener las obras del NAIM sino llevar a cabo acciones para su conservación, al considerar que sin mantenimiento adecuado, podrían dañarse las obras, estructuras y cimientos existentes.

Fue el 4 julio que un juez federal ordenó reunir todas las demandas vigentes, tanto en la CDMX como en Edomex, en un solo juzgado. Carrasco explica que la Ley de Amparo establece que cualquiera de las partes involucradas puede solicitar al Consejo de la Judicatura Federal que concentre las resoluciones de juicios de amparo del mismo tema, y previendo esto, fue que habían solicitado las suspensiones antes en distintos tribunales.

Pero a partir de este punto, todo está en manos del juez Juan Carlos Guzmán, del Juzgado Quinto de Distrito en Materia Administrativa de la Ciudad de México.

El 25 de julio, la Secretaría de Medio Ambiente y Recursos Naturales (Semarnat) aprobó la Manifestación de Imacto Ambiental (MIA) y consideró que el proyecto es viable, lo que quitó uno de los argumentos de las suspensiones, pero éstas todavía se mantenían por requerimientos como los estudios técnicos necesarios.

Carrasco comenta que esta aprobación tan rápida ya levantó sospechas, ya que se concedió en 67 días, el mismo tiempo que se tarda Semarnat, por ejemplo, en autorizar una carretera para un pueblo.

El colectivo llegó a tener vigentes 11 suspensiones judiciales y durante julio puso otros tres amparos, por lo que suman 150, según el abogado.

La nueva estrategia del Gobierno

El 16 de agosto la detención de las obras escaló un paso más, ya que el Juez Quinto concedió una suspensión definitiva hasta que se resolvieran los juicios de amparo. Los jueces anteriores sólo habían condicionado la obra a que se cumpliera con estudios y permisos, pero detenerla hasta resolver el amparo podría llevar meses.

Las suspensiones son medidas cautelares en lo que se analizan a fondo los amparos, pero mientras estos sigan pendientes, nada es definitivo en cuanto a la construcción del aeropuerto de Santa Lucía.

Una semana después, el 20 de agosto, el abogado Gerardo Carrasco consiguió en el amparo a su nombre la suspensión contra todos los efectos y consecuencias del proyecto de Santa Lucía.

Entonces, el Gobierno ideó una nueva estrategia para revertir las suspensiones, anunciada por el propio López Obrador en su conferencia matutina días después, que fue decretar que todos los espacios de la Secretaría de la Defensa Nacional (Sedena), encargada del nuevo proyecto, son de “interés nacional”.

La Sedena solicitó en un juicio que ante esta declaratoria, se revocara la suspensión, argumentando que Santa Lucía y el plan de convertir la base militar en un aeropuerto civil sean considerados dentro de esa categroría de instalación estratégica. Por ahora sólo pidió revocar dos de las suspensiones pero se prevé que lo solicite con el resto de recursos.

Así se llegó a que el Juez retomara este argumento y este 8 de octubre revocara la suspensión otorgada a Carrasco.

El abogado reconoce que la decisión del juez sienta un mal precedente de lo que puede suceder con el resto de amparos y suspensiones, ya que puso el argumento del gobierno de que es una cuestión de seguridad por encima de todas las que habían sido razonamientos previos de que se tenía que contar con los estudios y documentos necesarios para una obra así.

“El juez, de facto, autorizó que se construya un aeropuerto sin permisos ni estudios, únicamente porque dijo la Sedena que es de seguridad nacional”, lamenta.

Esta decisión todavía se puede impugnar en otra instancia. Y ayer mismo, el colectivo dio a conocer que había solicitado a la Suprema Corte de Justicia de la Nación (SCJN) intervenir. La Corte no resuelve juicios de amparo, pero solicitaron que atraiga cuatro recursos de revisión impuestos por las autoridades contra suspensiones definitivas. En máximo un mes, calcula Carrasco, se tendrá respuesta a si los atrae o no.

Aunque este caso de amparo ha sido el más conocido, hay otros amparos interpuestos por propietarios de tierras que fueron abarcadas por el proyecto de aeropuerto, que están en otros juzgados y siguiendo procesos distintos.

Así que por lo pronto, las obras del aeropuerto de Santa Lucía no empezarán todavía.

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal

Delta: las 5 mutaciones que hacen a esta variante del COVID más contagiosa y preocupante

Los datos preliminares apuntan que la variante delta es más transmisible, genera mayor riesgo de hospitalización y provoca síntomas diferentes de otras variantes.
10 de julio, 2021
Comparte

La variante delta del coronavirus fue detectada en India en octubre de 2020 y hasta ahora ha llegado al menos a 96 países.

En algunos de estos países se ha vuelto la variante dominante, como en el caso de Singapur, Reino Unido y Portugal.

Los datos preliminares muestran que es más transmisible que otras variantes, conlleva un mayor riesgo de hospitalización y reinfección, y genera un cuadro de síntomas ligeramente diferentes (más dolor de cabeza y menos tos, por ejemplo).

Se estima que la variante delta es entre 30% y 60% más transmisible que otras variantes del coronavirus.

En Reino Unido, ya se ha vuelto dominante y representa el 90% de los casos nuevos.

Esta variante ha suscitado preocupaciones sobre la posibilidad de evadir la protección de las vacunas, pero no hay confirmación de esta hipótesis.

En otras palabras, los estudios hasta ahora muestran que las vacunas siguen siendo eficaces contra la delta.

En Brasil, la ciudad de São Paulo ya admitió que la delta se está extendiendo en la ciudad, pero no se sabe en qué medida o si llegará a ser dominante.

Pero ¿qué hace que esta variante delta sea más preocupante?

En términos generales, es un conjunto de “mejoras” genéticas que facilitan la propagación e invasión del cuerpo humano.

Pero no debemos ignorar la problemática ambiental involucrada, es decir, cómo el comportamiento de la sociedad sin medidas de control y prevención también influye en la transmisión de estas variantes.

Mutaciones ‘ventajosas’ para el coronavirus

El Sars-CoV-2, el coronavirus que causa la enfermedad de covid-19, no tiene tanta capacidad para mutar como el virus de la gripe, por ejemplo.

Pero cuando surgen nuevas variantes, necesitan tener características “ventajosas” que las hagan viables en un entorno de tanta competencia y selección para invadir los cuerpos humanos.

En una presentación sobre la variante delta al gobierno sudafricano, el bioinformático Tulio de Oliveira, director del laboratorio Krisp de la Universidad KwaZulu-Natal (Sudáfrica), enumeró las principales características de la variante delta.

Coronavirus

BSIP
La variante delta tiene mutaciones que facilitan la invasión y escape del sistema inmune.

Es más transmisible y es más probable que reinfecte a las personas que ya se han enfermado con otras cepas, pero aún no hay pruebas claras de si la delta causa una enfermedad más grave o si escapa a la protección que brindan las vacunas.

Oliveira también enumera tres grupos de mutaciones relevantes de la variante delta:

  1. Dos sustituciones en el dominio de unión al receptor celular (L452R y T478K)
  2. Sustitución cerca del sitio de clivaje S1 / S2 a través de la furina (P681R)
  3. Sustitución (T19R) y deleción (157-158del) en el dominio antigénico NTD.

Pero ¿qué representa todo esto? Vayamos a cada uno de ellos.

1. Invasión celular más eficiente

Una parte importante de estos cambios “ventajosos” se han producido en la forma en que el virus se conecta a nuestras células.

Más específicamente, el vínculo entre la espiga del virus (también conocida como proteína S) y el receptor ACE2, una enzima que se encuentra en la superficie de nuestras células.

Esta espiga actúa como si fuera la llave que abre la cerradura de nuestra célula y permite la invasión del coronavirus.

Una vez dentro, utiliza la estructura celular para multiplicarse.

En el caso de la variante delta, existen dos mutaciones relevantes en la espiga, que se conocen por los códigos L452R y T478K.

Pero, ¿qué significan estos números y letras? La primera letra es el tipo de aminoácido que existía antes del cambio (L, símbolo de lisina), el número corresponde a la ubicación (452º de 1273 aminoácidos) y la última letra es el aminoácido que entró en su lugar (R, símbolo de arginina).

En términos generales, un virus es un ácido nucleico (ADN o ARN) rodeado por conjuntos de aminoácidos (proteínas).

La capa externa sirve para adherirse e invadir la célula humana, por ejemplo, y la capa interna sirve como un manual de instrucciones que se utilizará para producir nuevos virus dentro de la célula invadida.

laboratorio

Getty Images
Han surgido miles de mutaciones del coronavirus desde que fue identificado.

Durante este proceso de producción de virus, los aminoácidos circundantes pueden sufrir tres tipos de mutación: eliminación (deleción), aparición (inserción) o cambio (sustitución).

Estas mutaciones no ocurren por ningún motivo específico y, a menudo, se pierden en el camino.

Pero algunas de ellas se establecen y comienzan a aparecer a partir de la replicación del virus.

Este es el caso de dos mutaciones delta clave: L452R y T478K.

El cambio de L a R en la posición 452 y el cambio de T a K en la posición 478 resultaron ser “ventajosos” para el virus porque ayudaron al invasor a adherirse mejor en la puerta de entrada (la enzima ACE2).

Esto explica por qué esta variante se ha vuelto más transmisible.

Además de una invasión más eficiente, hay una tendencia a que cuantos más virus invadan las células, más virus se replicarán, aumentando la carga viral.

Por lo tanto, habrá más virus que se propagarán al toser o estornudar, por ejemplo.

Un estudio dirigido por investigadores de los Centros para el Control y la Prevención de Enfermedades de China encontró que una persona infectada con la variante delta puede tener hasta 1.000 veces más virus en su cuerpo que alguien infectado con versiones tempranas del coronavirus al comienzo de la pandemia, a finales de 2019.

Esta carga viral más alta también puede estar asociada con una mayor gravedad de la enfermedad, ya que la variante tiende a afectar a más células respiratorias humanas.

2. Activación más eficiente y teoría de la creación de coronavirus en el laboratorio

Para invadir la célula humana, no es suficiente que un virus encuentre una puerta de entrada y se adhiera a ella: primero debe activarse.

En el caso de Sars-CoV-2, esta activación ocurre a través de una enzima en el cuerpo humano (llamada furina) que corta la espiga del coronavirus en dos: S1 y S2.

Después de este corte, llamado clivaje, una parte de la espiga (S1) se adhiere a la célula humana y la otra (S2) fusiona su membrana con la membrana de la célula humana, permitiendo la inserción de material genético e iniciando la producción de más virus.

Al cortar la espiga, la enzima hace que se abra y revele secuencias genéticas ocultas que lo ayudan a unirse más estrechamente a las células del tracto respiratorio humano, por ejemplo.

Una mutación cercana a esta ubicación puede alterar aún más este comportamiento.

Este es el caso de la variante delta, que porta una mutación (P681R) en esa región.

“Cuanto más sensible a la furina humana, más eficiente será la espiga del virus. Este proceso de fusión activado por furina está mediado por el área desde el aminoácido en la posición 618 hasta la posición del aminoácido 1273”, explica el virólogo José Eduardo Levi, coordinador de investigación y desarrollo de la red de laboratorios Dasa, e investigador del Instituto de Medicina Tropical de la Universidad de São Paulo (USP).

“Una mutación en esta región, como P681R, hace que esta fusión sea más rápida. Esta mutación aparece tanto en las variantes delta como la alfa, descubierta en el Reino Unido, y en algunos casos en la gamma, descubierta en Brasil “, agrega.

Las mutaciones en esta región del coronavirus son tan relevantes que están en el centro de dos puntos centrales de la pandemia.

Primero, se cree que esta afinidad por la furina humana fue crucial para permitir que el virus saliera de otras especies animales y comenzara a infectar a los humanos a fines de 2019.

En segundo lugar, este mecanismo es tan eficiente y atípico entre los tipos de coronavirus que infectan a los humanos que se ha convertido en el principal argumento de quienes afirman sin evidencia que el Sars-CoV-2 se generó o modificó en el laboratorio.

Instituto de virología de Wuhan

Reuters
Hay teorías no comprobadas de que el virus fue creado en un laboratorio.

“Todos los coronavirus que infectan a los humanos tienen un dominio determinado, un área específica que reconoce la furina”, explica Levi.

“Pero el Sars-CoV-2 está muy humanizado. En otras palabras, es mucho más eficiente de lo que se ha visto en otros coronavirus, que tienen un reconocimiento razonable de la furina”.

“Y solo el Sars-CoV-2 tiene esta mutación, esta inserción de cuatro aminoácidos. Ese es el argumento más fuerte de que este coronavirus se creó en el laboratorio”.

“Porque hasta ahora, no se ha encontrado ningún coronavirus intermedio que apunte a que fue mejorando poco a poco. Este llegó listo para ser segmentado por la furina humana “, agrega el científico.

Según el experto la falta de esta secuencia de cuatro aminoácidos en el coronavirus Sars-CoV puede explicar por qué causó una epidemia de Sars limitada a Asia en 2003, que no llegó a convertirse en una pandemia que se ha extendido por todo el mundo como Sars-CoV-2.

3. Escapar parcialmente de anticuerpos y vacunas

Fernando Spilki, profesor de la Universidad Feevale y coordinador de la Red Corona-Ômica, en el Ministerio de Ciencia, Tecnología e Innovación de Brasil, utiliza la analogía de las piezas de Lego para explicar el papel de las mutaciones en los eventuales escapes de las variantes del sistema inmunológico y las vacunas.

Al aprender a defenderse, las células de defensa, como los anticuerpos neutralizantes, utilizan partes de los invasores para saber cómo identificarlos y combatirlos.

Cuando se producen mutaciones en el coronavirus, por ejemplo, es como si las partes de los anticuerpos ya no encajaran bien con las del invasor, lo que facilita el escape.

Por lo tanto, el virus puede al mismo tiempo mutar para acoplarse de manera más eficiente a la puerta de entrada de la célula y escapar parcialmente del encaje con anticuerpos neutralizantes.

Para Spilki, “es como si el virus creara vías para escapar del sistema inmunológico y desarrollara formas más efectivas de transmisión”.

Explica que todos estos cambios fueron “previstos” en experimentos de laboratorio, que son capaces de analizar la influencia de cada intercambio, inserción o supresión de estas pequeñas piezas sobre el comportamiento del coronavirus.

En el caso de la variante delta, las mutaciones vinculadas a ella son la sustitución T19R y la deleción 157-158del.

Volviendo a la analogía de las piezas de Lego, la sustitución del aminoácido T (treonina) por el R (arginina) en la posición 19 dificulta que el sistema de defensa del cuerpo identifique al invasor para combatirlo.

Lo mismo ocurre con la “falta” de aminoácidos en las posiciones 157 y 158.

En general, las proteínas tienen dos extremos, uno llamado N-terminal y el otro C-terminal.

En el caso de los coronavirus, la región N-terminal (DTN) se considera más antigénica o inmunogénica.

Es decir, el sistema de defensa humano “percibe” mejor y produce más anticuerpos en su contra.

La espiga (proteína S) es la más antigénica de ellas, por lo que generalmente se producen vacunas dirigidas a esta estructura para enseñar al sistema de defensa del cuerpo a identificarla para combatir el coronavirus en su conjunto.

Aquí es donde entra en juego la mutación como una forma de obstaculizar la lucha contra el coronavirus.

Los cambios (deleciones y sustituciones) en la estructura de la variante delta en un área antigénica (DTN) dificultan la actuación del sistema de defensa del organismo.

“¿Por qué rayos comienza a eliminar partes de su genoma? Tiene que tener una razón poderosa para eso. ¿Cuál? La respuesta inmune humana, ya sea natural por infección o inducida por vacunas”, explica Levi.

“En general, la deleción es perjudicial, o sea, hace que el virus sea ineficaz y acabe siendo eliminado. Pero en el caso de las variantes del coronavirus, estas deleciones están siendo ventajosas porque eliminan regiones que provocan una respuesta inmune muy fuerte en el huésped y así logran escapar (del sistema de defensa humano) “, agrega.

Hasta ahora, hay evidencia de que la variante delta puede escapar de los anticuerpos de personas que ya han sido infectadas con la variante beta (descubierta en Sudáfrica).

Pero aún no hay evidencia de que sea capaz de escapar a la respuesta inmune generada por las vacunas.

Vale la pena recordar que ninguna de estas mutaciones es exclusiva de una u otra variante. Lo que las vuelve preocupantes es su conjunto.

Es decir, que al mismo tiempo tengan nuevas características que las hacen invadir mejor las células, ser más eficiente para activarse y escapar del sistema de defensa.

Según Levi, el contexto de varias variantes que tienen mutaciones aleatorias que son relativamente similares se llama convergencia evolutiva.

Esto se debe, entre otras razones, a que la presión evolutiva de la selección natural contra las formas más diversas de coronavirus en el mundo es prácticamente la misma: las personas están adquiriendo inmunidad, ya sea por la vacuna o porque se infectaron con el virus.


Ahora puedes recibir notificaciones de BBC Mundo. Descarga la nueva versión de nuestra app y actívalas para no perderte nuestro mejor contenido.

https://www.youtube.com/watch?v=z074SRnf2lY

Lo que hacemos en Animal Político requiere de periodistas profesionales, trabajo en equipo, mantener diálogo con los lectores y algo muy importante: independencia. Tú puedes ayudarnos a seguir. Sé parte del equipo. Suscríbete a Animal Político, recibe beneficios y apoya el periodismo libre.

#YoSoyAnimal
close
¡Muchas gracias!

Estamos procesando tu membresía, por favor sé paciente, este proceso puede tomar hasta dos minutos.

No cierres esta ventana.